Frequency of bap and cpaA virulence genes in drug resistant clinical isolates of Acinetobacter baumannii and their role in biofilm formation

Authors

  • Alka Hasani Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
  • Arezoo Fallah Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran|Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
  • Mohammad Ahangarzadeh Rezaee Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran|Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
Abstract:

Objective(s): Acinetobacter baumannii has a high propensity to form biofilm and frequently causes medical device-related infections with multiple-drug-resistance in hospitals. The aim of this work is to study antimicrobial resistance and the role of bap and cpaA genes in biofilm formation by A. baumannii to understand how this pathogen persists in the hospital environment. Materials and Methods: Theantibiotic resistance profile and in vitro biofilm-forming ability of one hundred clinical isolates of A. baumannii was evaluated by disc diffusion and crystal-violet staining methods, respectively. Isolates were tested for the presence of bap and cpaA genes. Results: The isolates were highly resistant to cefepime, third-generation cephalosporins, ciprofloxacin, cotrimoxazole, aminoglycosides and carbapenems. Moreover, four isolates were resistant to colistin. Quantification of biofilm showed that 43% of the isolates were strong biofilm-producer. Furthermore, 32% of the isolates exhibited moderate biofilm-formation and showed initial binding activity. Frequency of bap and cpaA were determined 92% and 36%, respectively. Conclusion: There was strong association between the presence of bap gene and biofilm formation by A. baumannii isolates (P=0.003). In addition, multidrug resistant isolates produced stronger biofilm than other isolates (P=0.0001). These results indicate importance of biofilm in resistance of isolates and effect of presence of bap gene in biofilm formation by A. baumannii strains.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Molecular Analysis and Expression of bap Gene in Biofilm-Forming Multi-Drug-Resistant Acinetobacter baumannii

Background: Acinetobacter baumannii is commonly resistant to nearly all antibiotics due to presence of antibiotic resistance genes and biofilm formation. In this study we determined the presence of certain antibiotic-resistance genes associated with biofilm production and the influence of low iron concentration on expression of the biofilm-associated protein gene (bap) in development of biofilm...

full text

Prevalence Determination of Virulence Related and Biofilm Formation Genes in Acinetobacter baumannii Isolates from Clinical Respiratory Samples in Imam Khomeini Hospital, Tehran, Iran in 2018

Background and Objective: Acinetobacter baumannii is considered to be a re-emerging causative agent of nosocomial infections. There is a significant relation between pathogenicity of this bacterium and the numerous virulence factors. The purpose of this study was to investigate nine virulence factor genes in A. baumannii isolates derived from hospitalized patients. Materials and Methods: A tot...

full text

Detection of icaABCD Genes and Biofilm Formation in Clinical Isolates of Methicillin Resistant Staphylococcus aureus

Background & Objectives:  Methicillin resistance Staphylococcus aureus (MRSA) is one of the most important pathogens that causes several nosocomial and community infections. Adhesion to surfaces and biofilm formation is considered main step in staphylococcal infection. The aims of this study were to determine presence oficaABCD genes and relation to the biofilm formation in of...

full text

Biofilm Formation and Detection of IcaAB Genes in Clinical Isolates of Methicillin Resistant Staphylococcus aureus

Objective(s) Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of nosocomial and community infections. Biofilm formation, mediated by a polysaccharide intercellular adhesin (PIA) and encoded by the ica operon, is considered to be an important virulence factor in both S. epidermidis and S. aureus. However, the clinical impact of the ica locus and PIA production is less w...

full text

Phonotypic Investigation of Biofilm Formation and Determination of Presence of bap and blaOXA-51 Genes in Acinetobacter baumannii From Clinical Specimens in Tehran

 Background:  Acinetobacter baumannii is a non-fermentative gram-negative coccobacill that has high level of resistance to antimicrobial agents. Biofilm formation is an important feature of most clinical isolates of Acinetobacter spp, this led to higher resistance to antibiotics. The current study aimed to assess the ability of biofilm production and to determine the frequency of bap gene in cl...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 20  issue 8

pages  849- 855

publication date 2017-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023